您的位置:首页 >生活百科 >

等差数列前n项和公式推导两种(等差数列前n项和公式)

大家好,我是小新,我来为大家解答以上问题。等差数列前n项和公式推导两种,等差数列前n项和公式很多人还不知道,现在让我们一起来看看吧!

公式为Sn=n(a1+an)/2,推导:

Sn=a1+a2+……+a(n-1)+an。

则由加法交换律

Sn=an+a(n-1)+……+a2+a1。

两式相加:

2Sn=(a1+an)+[a2+a(n-1)]+……+[a(n-1)+a2]+(an+a1)。

因为等差数列中a1+an=a2+a(n-1)=……

所以2Sn=n(a1+an)。

所以Sn=(a1+an)*n/2。

扩展资料:

等差数列性质

1、在等差数列中,若Sn为该数列的前n项和,S2n为该数列的前2n项和,S3n为该数列的前3n项和,则Sn,S2n-Sn,S3n-S2n也为等差数列。

2、记等差数列的前n项和为S。①若a >0,公差d<0,则当a ≥0且an+1≤0时,S 最大;②若a <0 ,公差d>0,则当a ≤0且an+1≥0时,S 最小。

3、数列为等差数列的重要条件是:数列的前n项和S 可以写成S=an^2+bn的形式(其中a、b为常数)。

参考资料来源:搜狗百科-等差数列

本文到此讲解完毕了,希望对大家有帮助。

免责声明:本文由用户上传,如有侵权请联系删除!