您的位置:首页 >生活百科 >

三角函数的公式图(三角函数的公式)

大家好,香香来为大家解答以上的问题。三角函数的公式图,三角函数的公式这个很多人还不知道,现在让我们一起来看看吧!

1、公式一:设α为任意角,终边相同的角的同一三角函数的值相等sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)2、公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα3、公式三:任意角α与-α的三角函数值之间的关系sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα4、公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα5、公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα6、公式六:π/2±α与α的三角函数值之间的关系sin(π/2+α)=cosαsin(π/2-α)=cosαcos(π/2+α)=-sinαcos(π/2-α)=sinαtan(π/2+α)=-cotαtan(π/2-α)=cotαcot(π/2+α)=-tanαcot(π/2-α)=tanα一、倍角公式Sin2A=2SinA*CosA2、Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-13、tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A) )二、降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/22、2cos^2(α)=(1+cos(2α))/2=covers(2α)/23、tan^2(α)=(1-cos(2α))/(1+cos(2α))三、推导公式1tanα+cotα=2/sin2α2、tanα-cotα=-2cot2α3、1+cos2α=2cos^2α4、、4-cos2α=2sin^2α5、1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin2a)+(1-2sin2a)sina四、两角和差1cos(α+β)=cosα·cosβ-sinα·sinβ2、cos(α-β)=cosα·cosβ+sinα·sinβ3、sin(α±β)=sinα·cosβ±cosα·sinβ4、4tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)5、tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)五、和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]2、sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]3、cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]4、cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]5、tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)六、积化和差sinαsinβ = [cos(α-β)-cos(α+β)] /22、sinαcosβ = [sin(α+β)+sin(α-β)]/23、cosαsinβ = [sin(α+β)-sin(α-β)]/2七、诱导公式(-α) = -sinα、cos(-α) = cosα2、tan (—a)=-tanα、sin(π/2-α) = cosα、cos(π/2-α) = sinα、sin(π/2+α) = cosα3、3cos(π/2+α) = -sinα4、(π-α) = sinα、cos(π-α) = -cosα5、5tanA= sinA/cosA、tan(π/2+α)=-cotα、tan(π/2-α)=cotα6、tan(π-α)=-tanα、tan(π+α)=tanα八、锐角三角函数公式sin α=∠α的对边 / 斜边2、α=∠α的邻边 / 斜边3、tan α=∠α的对边 / ∠α的邻边4、cot α=∠α的邻边 / ∠α的对边1886位粉丝两角和公式sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosacos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinbtan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)cot(a+b)=(cotacotb-1)/(cotb+cota)cot(a-b)=(cotacotb+1)/(cotb-cota)倍角公式tan2a=2tana/[1-(tana)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2sin2a=2sina*cosa半角公式sin(a/2)=√((1-cosa)/2) sin(a/2)=-√((1-cosa)/2)cos(a/2)=√((1+cosa)/2) cos(a/2)=-√((1+cosa)/2)tan(a/2)=√((1-cosa)/((1+cosa)) tan(a/2)=-√((1-cosa)/((1+cosa))cot(a/2)=√((1+cosa)/((1-cosa)) cot(a/2)=-√((1+cosa)/((1-cosa)) tan(a/2)=(1-cosa)/sina=sina/(1+cosa)和差化积2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b) )2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)sina+sinb=2sin((a+b)/2)cos((a-b)/2)cosa+cosb=2cos((a+b)/2)sin((a-b)/2)tana+tanb=sin(a+b)/cosacosb积化和差公式sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)sin(pi/2-a)=cos(a) pi=3.1415926....cos(pi/2-a)=sin(a)sin(pi/2+a)=cos(a)cos(pi/2+a)=-sin(a)sin(pi-a)=sin(a)cos(pi-a)=-cos(a)sin(pi+a)=-sin(a)cos(pi+a)=-cos(a)tga=tana=sina/cosa万能公式sin(a)= (2tan(a/2))/(1+tan^2(a/2))cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))tan(a)= (2tan(a/2))/(1-tan^2(a/2))sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ积化和差sinαsinβ=-[cos(α+β)-cos(α-β)] /2cosαcosβ=[cos(α+β)+cos(α-β)]/2sina30°=2/1 。

2、45°=√2/2,60°=√3/2,90°=1。

本文到此分享完毕,希望对大家有所帮助。

免责声明:本文由用户上传,如有侵权请联系删除!